基于热重分析的ETFE绝缘电线老化特性及寿命评估方法研究

张凡, 王晓佳, 陈宇, 边智

装备环境工程 ›› 2025, Vol. 22 ›› Issue (11) : 59-66.

PDF(1811 KB)
PDF(1811 KB)
装备环境工程 ›› 2025, Vol. 22 ›› Issue (11) : 59-66. DOI: 10.7643/ issn.1672-9242.2025.11.006
航空航天装备

基于热重分析的ETFE绝缘电线老化特性及寿命评估方法研究

  • 张凡, 王晓佳*, 陈宇, 边智
作者信息 +

Aging Characteristics and Lifespan Assessment Methods of ETFE Insulated Wires Based on Thermogravimetric Analysis

  • ZHANG Fan, WANG Xiaojia*, CHEN Yu, BIAN Zhi
Author information +
文章历史 +

摘要

目的 基于热重分析方法,系统探究镀锡与镀银铜合金导体ETFE绝缘电线的热降解规律。方法 结合时温等效原理与阿伦尼乌斯方程,构建ETFE绝缘电线的加速老化模型。提出一种适用于ETFE绝缘电线的老化寿命评估方法,并设计加速老化试验,验证其对产品寿命的可靠性。结果 ETFE绝缘材料热质量损失过程可分为低温挥发、高温分解和残留稳定3个阶段。由于导热滞后效应,升温速率的提高显著延迟了热降解温度,镀银与镀锡导体的热稳定性差异较小。采用构建的ETFE绝缘电线老化寿命评估方法,得出了ETFE绝缘电线60 ℃加速老化寿命与25 ℃老化寿命的等效关系,并验证了60 ℃条件下的绝缘线缆寿命。结论 本研究提出的ETFE绝缘电线热稳定性评价体系与寿命验证评估方法,为高温电缆的质量控制、规范验收等提供了科学方法,在航空装备等领域具有一定的工程应用价值。

Abstract

Based on the thermogravimetric analysis method, the work aims to systematically investigate the thermal degradation laws of ETFE insulated wires for tin-plated and silver-plated copper alloy conductors. By combining the time-temperature equivalence principle and the Arrhenius equation, an accelerated aging model for ETFE insulated wires was constructed. A method for verifying and evaluating the aging lifespan of ETFE insulated wires was proposed, and an accelerated aging test was designed to verify the reliability of the product lifespan assessment. The thermogravimetric analysis results showed that the thermal weight loss process of ETFE insulated materials could be divided into three stages of low-temperature volatilization, high-temperature decomposition, and residual stability. Due to the thermal conduction lag effect, the increase in the heating rate significantly delayed the thermal degradation temperature. The thermal stability difference between silver-plated and tin-plated conductors was relatively small.By using the constructed aging lifespan assessment method for ETFE insulated wires, the equivalent relationship between the accelerated aging lifespan at 60 ℃ and the aging lifespan at 25 ℃ of ETFE insulated wires is obtained, and the lifespan of insulated wires at 60 ℃ is verified. The thermal stability evaluation system and lifespan verification assessment method for ETFE insulated wires proposed in this study provide a scientific method for the quality control and standardized acceptance of high-temperature cables and have certain engineering application value in fields such as aviation equipment.

关键词

铜合金交联ETFE电缆 / 热质量损失分析 / 时温等效原理 / 阿伦尼乌斯方程 / 活化能 / 加速老化试验 / 寿命评估

Key words

copper alloy cross-linked ETFE cable / thermogravimetic analysis / time-temperature equivalence principle / Arrhenius equation / activation energy / accelerated aging test / lifespanassessment

引用本文

导出引用
张凡, 王晓佳, 陈宇, 边智. 基于热重分析的ETFE绝缘电线老化特性及寿命评估方法研究[J]. 装备环境工程. 2025, 22(11): 59-66 https://doi.org/10.7643/ issn.1672-9242.2025.11.006
ZHANG Fan, WANG Xiaojia, CHEN Yu, BIAN Zhi. Aging Characteristics and Lifespan Assessment Methods of ETFE Insulated Wires Based on Thermogravimetric Analysis[J]. Equipment Environmental Engineering. 2025, 22(11): 59-66 https://doi.org/10.7643/ issn.1672-9242.2025.11.006
中图分类号: TM206   

参考文献

[1] 闵峻. 乙烯-四氟乙烯共聚物绝缘电缆制备关键技术研究[D]. 哈尔滨: 哈尔滨工业大学, 2022.
MIN J.Research on Key Technologies for the Preparation of Ethylene Tetrafluoroethylene Copolymer Insulated Cables[D]. Harbin: Harbin Institute of Technology, 2022.
[2] 钱景. 乙烯-四氟乙烯共聚物复合体系的结构与性能研究[D]. 合肥: 中国科学技术大学, 2019.
QIAN J.Study on the Structure and Properties of Ethylene Tetrafluoroethylene Polymer Composite System[D]. Hefei: University of Science and Technology of China, 2019.
[3] PARK E S.Effects of Electron Beam Irradiation on Properties of ETFE Insulated Electric Wire[J]. Iranian Polymer Journal, 2011, 13(5): 33-41.
[4] 张金成. 电线电缆制造工艺与影响因素分析[J]. 集成电路应用, 2020, 37(4): 130-131.
ZHANG J C.Analysis of Manufacturing Process and Influencing Factors for Wires and Cables[J]. Application of IC, 2020, 37(4): 130-131.
[5] LOPEZ G.High-Performance Polymers for Aeronautic Wires Insulation: Current Uses and Future Prospects[J]. Recent Progress in Materials, 2021, 3(1): 233966451.
[6] KEMARI A.Review on High-Temperature Polymers for Cable Insulation: State-of-the-Art and Future Developments[M]. Hoboken: Wiley, 2023.
[7] 林伟男. 新型敏化剂HLC对乙烯-四氟乙烯共聚物(ETFE)辐射交联的影响及性能探究[D]. 广州: 暨南大学, 2020.
LIN W N.Study on the Effect and Properties of New Sensitizer HLC on Radiation Crosslinking of Ethylene Tetrafluoroethylene (ETFE) Polymers[D]. Guangzhou: Jinan University, 2020.
[8] 王鹏, 吴刚, 周莹, 等. 交联乙烯-四氟乙烯共聚物绝缘线缆辐照交联的质量问题[J]. 电线电缆, 2017(3): 11-14.
WANG P, WU G, ZHOU Y, et al.The Quality Problems of Crosslinked Ethylene-Tetrafluoroethylene Copolymer Cable[J]. Wire & Cable, 2017(3): 11-14.
[9] ZHANG X D, CHEN F, SU Z M, et al.Effect of Radiation-Induced Cross-Linking on Thermal Aging Properties of Ethylene-Tetrafluoroethylene for Aircraft Cable Materials[J]. Materials, 2021, 14(2): 257.
[10] 张金成. 电线电缆制造的新工艺分析[J]. 集成电路应用, 2019, 36(3): 82-83.
ZHANG J C.New Technology of Wire and Cable Manufacturing[J]. Application of IC, 2019, 36(3): 82-83.
[11] RIBA J R, MORENO-EGUILAZ M, IBRAYEMOV T, et al.Surface Discharges Performance of ETFE- and PTFE-Insulated Wires for Aircraft Applications[J]. Materials, 2022, 15(5): 1677.
[12] 邵春明, 孙洪阳, 陈振华. 乙烯-四氟乙烯共聚物高温老化研究[J]. 化工生产与技术, 2019, 25(1): 1-3.
SHAO C M, SUN H Y, CHEN Z H.Study on High Temperature Aging of Ethylene-Tetrafluoroethylene Copolymer[J]. Chemical Production and Technology, 2019, 25(1): 1-3.
[13] 闵峻, 翟国富, 高福刚, 等. 辐照交联ETFE电缆加热失活技术研究[J]. 科技创新与应用, 2021, 11(11): 17-22.
MIN J, ZHAI G F, GAO F G, et al.Research on Heating Deactivation Technology of Radiation Crosslinked ETFE Cable[J]. Technology Innovation and Application, 2021, 11(11): 17-22.
[14] 曹丹, 王长进, 史丛丛, 等. 辐照乙烯-四氟乙烯共聚物的热老化性能[J]. 辐射研究与辐射工艺学报, 2020, 38(4): 35-40.
CAO D, WANG C J, SHI C C, et al.Thermal Aging Properties of Irradiated Ethylene-Tetrafluoroethylene Copolymers[J]. Journal of Radiation Research and Radiation Processing, 2020, 38(4): 35-40.
[15] 张海明, 张义, 贾晓, 等. 真空紫外辐照对交联乙烯-四氟乙烯线缆的影响[J]. 强激光与粒子束, 2022, 34(11): 98-103.
ZHANG H M, ZHANG Y, JIA X, et al.Effect of Vacuum Ultraviolet Radiation on X-ETFE Cable[J]. High Power Laser and Particle Beams, 2022, 34(11): 98-103.
[16] 侯帅, 傅明利, 黎小林, 等. 220kV电缆XLPE绝缘材料热氧老化性能对比[J]. 电机与控制学报, 2024, 28(4): 120-130.
HOU S, FU M L, LI X L, et al.Comparative Study on Thermal-Oxidative Aging Properties of XLPE Insulation for 220 kV Cable[J]. Electric Machines and Control, 2024, 28(4): 120-130.
[17] 景钰, 常彩霞, 张婧俣, 等. 基于热重和拉伸实验的XLPE电缆绝缘热老化状态分析及机理研究[J]. 电网与清洁能源, 2019, 35(8): 16-24.
JING Y, CHANG C X, ZHANG J Y, et al.Aging Performance and Mechanism of XLPE Cable Insulation Based on Thermogravimetric and Tensile Tests[J]. Power System and Clean Energy, 2019, 35(8): 16-24.
[18] 刘超, 代娜, 丁晓青. 基于TG法和CA法的核用电缆交联料活化能对比分析[J]. 电线电缆, 2024(5): 52-57.
LIU C, DAI N, DING X Q.Comparative Analysis of Activation Energy for Nuclear Cable Crosslinking Materials Based on TG Method and CA Method[J]. Wire & Cable, 2024(5): 52-57.
[19] ISO. Plastics—Thermogravimetry (TG) of Polymers Part 2: Determination of Activation Energy: ISO 11358-2: 2021[S]. Geneva: ISO, 2021.
[20] 国家质量监督检验检疫总局, 中国国家标准化管理委员会. 电气绝缘材料耐热性第1部分: 老化程序和试验结果的评定: GB/T 11026.1—2016[S]. 北京: 中国标准出版社, 2016.
General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration of the People's Republic of China. Heat Resistance of Electrical Insulating Materials-Part 1: Aging Procedures and Evaluation of Test Results: GB/T 11026.1—2016[S]. Beijing: China Standard Press, 2016.
[21] 胡诚成, 倪勇. 热失重法快速评估交联聚乙烯材料热老化寿命的可靠性研究[J]. 电线电缆, 2021(3): 16-18.
HU C C, NI Y.Reliability Study on Rapid Evaluation of Thermal Aging Life of Cross-Linking Polyethylene by Thermogravimetry[J]. Wire & Cable, 2021(3): 16-18.
[22] 李春涛, 易玉华, 李宗景. 采用热重分析法预测PTMG型聚氨酯弹性体的使用寿命[J]. 聚氨酯工业, 2015, 30(6): 16-19.
LI C T, YI Y H, LI Z J.Service Life Prediction of PTMG Polyurethane Elastomer by Thermogravimetry[J]. Polyurethane Industry, 2015, 30(6): 16-19.
[23] 韩永进, 洪宁宁, 潘国梁. 热重法评估橡胶绝缘材料的热老化寿命[J]. 电线电缆, 2017(6): 21-23.
HAN Y J, HONG N N, PAN G L.Thermal Aging Lives Evaluation of Rubber Insulation Materials by TGA[J]. Wire & Cable, 2017(6): 21-23.
[24] 柯玉超, 王识君, 吴蕾. 基于加速老化的橡胶密封件使用寿命评估[J]. 液压气动与密封, 2018, 38(12): 79-83.
KE Y C, WANG S J, WU L.The Lifespan Prediction of Rubbers through Temperature Accelerated Aging[J]. Hydraulics Pneumatics & Seals, 2018, 38(12): 79-83.
[25] 石聪聪, 陈莎, 陈晨, 等. 热老化作用下交联聚乙烯电缆绝缘材料电树枝引发特性研究[J]. 中国测试, 2023, 49(S2): 165-170.
SHI C C, CHEN S, CHEN C, et al.Study on the Electrical Tree Initiation Characteristics of Cross-Linked Polyethylene Cable Insulation Material under Thermal Aging[J]. China Measurement & Test, 2023, 49(S2): 165-170.
[26] 项丽, 赵利军, 康健, 等. 电线电缆绝缘材料的老化及质量控制[J]. 塑料助剂, 2023(1): 44-46.
XIANG L, ZHAO L J, KANG J, et al.Aging and Quality Control of Wire and Cable Insulation Materials[J]. Plastics Additives, 2023(1): 44-46.
[27] 王天, 白银浩, 吕中宾, 等. 交联聚乙烯电缆绝缘老化试验及其检测技术[J]. 绝缘材料, 2022, 55(6): 6-15.
WANG T, BAI Y H, LÜ Z B, et al.Progress in Insulation Ageing Test and Detecting Technology of XLPE Cable[J]. Insulating Materials, 2022, 55(6): 6-15.
[28] 霍瑞美, 刘飞, 江平开. 交联聚乙烯TG快速热寿命评估方法的研究[J]. 绝缘材料, 2013, 46(6): 19-24.
HUO R M, LIU F, JIANG P K.TG Rapid Evaluation Method Research of Thermal Life of Cross-Linked Polyethylene[J]. Insulating Materials, 2013, 46(6): 19-24.
[29] 中华人民共和国工业和信息化部. 电气绝缘浸渍漆和漆布快速热老化试验方法—热重点斜法: JB/T 1544—2015[S]. 北京: 中国标准出版社, 2015.
Ministry of Industry and Information Technology. Rapid Test Procedure for Thermal Endurance of Electrical Insulating Impregnting Varnishes and Varnished Fabrics.Thermogravameric Point Slope (TPS) Method: JB/T 1544—2015[S]. Beijing: China Standard Press, 2015.

PDF(1811 KB)

Accesses

Citation

Detail

段落导航
相关文章

/